Topolegy

Centmious Mogs alla whd we struts

Topalogy

- Exam 75%
- CA: 4 assignments 25%

Adventergo
Sulmit by Frdays +5 paints
Sulmuit by Mondary - O points
NO Extension

Iopolery
Gremettis netric $\leadsto>$ disternes, ingles (smatts mgne) \leadsto geen ats ('continow maps')
To delfne conlinicuits of a mas, tien melined is in terms of open sets be

Defoisiteen

(1) \varnothing, x are in tho topulogy

$$
\varnothing \quad \varnothing, x \in \tau
$$

(2) As Altary uions al elements
(3) Finitos interections of elemerts in J

Let $s \in \tau$ Then $U_{s e s} \in J$
Let $N=X$
$\tau \subset P(X)$. Let $\tau=\{\{15,\{2\}, \ldots,\{1,3\},\{2,3\}\}$,
= all pix subset

$$
S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\}=\{\{i\} \mid i=x\}
$$

$$
U_{s \in s}=X
$$

Since $x \not \tau, \tau$ is not a topology
Examples
(1) The thiriab ae
$\tau_{\text {tout }}=\{\varnothing, X\}$ for any set X
(2) The disinter Topology

$$
\sigma_{\text {diode }}=P(x)
$$

(3) Let $x=\mathbb{R}$ and consder Tox callatem of set consistry of ablests maions of gen intervals, wo

$$
\tau=\left\{S / S=\bigcup_{\alpha \alpha \mathcal{L}}\left(l_{\alpha}, r_{\alpha}\right)\right\}
$$

is ahe sterderd torrology on its
(4)

$$
\begin{aligned}
& x=\{0,1\} \\
& y=\{\varnothing, x,\{1\}\}
\end{aligned}
$$

(1) $\varnothing<\tau, x \in J$
(2) check ly had
(3) chedn ly hand

The is in Serponsli: Topology
(The smallest" non-tivab/nen-dscieter one)

Defmituen
A teprotoss $I \subset P(X), X$ same set st
(1) $\varnothing, x \in \mathcal{J}$
(2) $S \leqslant J, \bigcup_{s \in S} s \in J$
(3) $S<\mathcal{Y},|s|<\infty, \bigcap_{s \in S} s \in \mathcal{Y}$

Why
Open set?
From metro spaces: A subset $S \subseteq K^{2}$ st at every point $x \in S$, the rs exist $B_{d}(x) \subseteq s^{\text {point }}$ for same $d^{\prime}>0$ is gen
clim
The gen seto form a topaleyy
(You likely seude f contmious \Leftrightarrow pre ingze of gren set is open ngrof ${ }^{n}$
Let $\tau=$ gren sets in \mathbb{R}^{2} $\varnothing \in J, x \in \tau \quad($ as oven lills are
subsest in $\left.\mathbb{R}^{2}\right)$

- Unions?

Let, $S \subseteq J$, io $S=a$ callectom of gren sets
$x \in S \Rightarrow x \in S_{i} \quad$ (one of sex members)

$$
\Rightarrow \exists B_{d}(x) \leqslant S_{i} \leqslant U S_{i}=S
$$

- Intersectiens

Open sot form a topaloyy
So ve may garerabise Exy notten of confuruits betwees fondtoms of other spones

Defintion
Let J be a teprolery on x.
$s \subseteq x$ is gen ay seval
Examples (f Topralogies)
Pobricular point topalogy, Lit $x \in X$
Offine $v=\{\varnothing\} \cup\{S s x \mid x \in S\}$

$$
\varnothing \in J ノ x \in J ノ(x \in x)
$$

- unon? Lot $S \in J$, sug $S=U S_{i} \in J$

Then ethen $x \in S$ or $S_{c}=\varnothing$
\Rightarrow ethen $S_{i}=\varnothing V_{i}$, or some $S_{i} \neq \varnothing$
$\Rightarrow U S_{i}=\varnothing \quad x \in S_{i} \in U S_{i}$

$$
\Rightarrow U S_{i} \in J
$$

- intersectien?

Lef $S=\cap S_{i}, S_{i} \in J$
either $x \in S_{i}$ or $S_{i}=\varnothing$
If some $S_{i}=\varnothing \Rightarrow \cap s_{i}=\phi \in J$
If all $S_{i} \not \not \varnothing \Rightarrow+\in S_{\text {. fo all } i}$

$$
\Rightarrow x \in \cap S_{i} \Rightarrow \cap S_{i} \in J
$$

(NB haleb fa arliters intersections)

Exceruse B
Shew J is cleseel under usions and interection

$$
J=\{\varnothing,\{b\},\{b, c\},\{a, b\},\{a, b c\},\{a, b, a d\}\}
$$

Officition
A topalogy in x is motrizable
 st th callebte if wour of ore ballen in topolesy metro al form xt giren topology

Escrie
The desciets ogroloyy is meturiable

$$
\begin{aligned}
d: X \times X & \rightarrow \mathbb{R}_{20} \quad \text { as } \\
d(a, b) & = \begin{cases}1 & a \neq b \\
0 & a=b\end{cases}
\end{aligned}
$$

A lall $B_{r}(x)=\{y \in X / d(+y)<r\}$
$\begin{aligned} B_{1}(a)=\{a\} \Rightarrow & \text { 路 singeltors } \\ & \text { ere guas lalls }\end{aligned}$
are gues lalls
$B_{2}(a)=X \Rightarrow$ Giren a of $s<x$ ，
What about新沙会 set？

$$
S=\bigcup_{s \in S}\{s\} \in \text { in the torest }
$$ $\left(\begin{array}{l}\text { mon of gran } \\ \text { balles }\end{array}\right.$

\Rightarrow discrect lepolegss is metsadle
Is Ex B metrioble? NO!

Ex
cu-cordinality topoloyy (tapically colinit)
Let X be some set

$$
y=\{\varnothing\} \cup\{S c x \mid X \backslash S \text { a } f \text { in } x\}
$$

Chack

$$
\begin{aligned}
& \phi \in \tau \gamma \\
& x \cdot x=\varnothing, \quad|\phi|<\infty
\end{aligned}
$$

- Unions

Let $S_{i} \in J$ is
Then $X \backslash U S_{i}=1 \times \underbrace{X \backslash S_{i}}_{\text {lño }} \leq X \backslash S_{j}$ forsone;

- Entesecties

Bases of topolezy
Metrir topalery: A set in metrio topalegy io opeen of at it an on union of geen
Idea af base af storalogy is to generalio thes to all teprolegies
Definitures
Bue of a toruclozy (does nat need on aituab tepratery ? This is peet a condition on sets.

Let x be a set and $B \in P(x)$, B is a bove of a igrabesy of
(1) $\forall x \in X, \exists \underbrace{\mathcal{B}_{x} \in \mathbb{B}}_{\text {"las Soment" }}$ st $x \in \mathcal{B}_{x}$
(2) Let $B_{1}, B_{2} \in B$

$$
\forall x \in B_{1} \cap B_{2} \quad \exists B_{3} \subset B_{3} \text { st } B_{3} \subset B_{1} \cap B_{2}
$$

Example
(1) $B=\{x\}$ Borng and lasic

Cheelk
(1) Pich $x \in X$. Find B_{x} st $x \in B_{x}, B_{x}=X$
(2) Pidl

$$
\begin{aligned}
& M \quad B_{1} B_{2} \subset B \Rightarrow B_{1}=B_{2}=X \\
& \Rightarrow \forall x \in B_{1} \wedge B_{2}=x_{1} \quad \exists B_{x}=X \\
& \text { st } x \in B_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } B=\underset{\substack{\{B \\
\text { B } B}}{\{x\} \mid x \in x\}} \\
& \underbrace{B_{x} \cap B_{y}=\{x\}}_{x=y} \text { or } \underbrace{\infty}_{x \neq y}
\end{aligned}
$$

(3) Arithmeth progresion (bse of a eqpouzs)

$$
S(a, b)=\{a n+b \mid n \subset \mathbb{Z}\} \quad(a \in \mathbb{N})
$$

(1) Prall $\mu \in \mathcal{Z}$

$$
r \in S(1, r)=\{r+n \mid n \in \mathbb{Z}\}=\mathbb{Z}
$$

(2) L\& $\underbrace{r \in S(a, b)}_{r=n a+b} \wedge \underbrace{S\left(a^{\prime}, l^{\prime}\right)}_{n=m a^{\prime}+l^{\prime}}$

$$
\Rightarrow r=n a+l=m a^{\prime}+b^{\prime}
$$

Weate $S(c, d) \quad s t r \in S(c, d) \subset S(a, b) \sim S\left(a, l^{\prime}\right)$ Let $c=\operatorname{lcm}\left(a, a^{\prime}\right), d=r$
$\operatorname{lem}\left(a, a^{\prime}\right) \operatorname{scd}\left(a, a^{\prime}\right)=u a^{\prime}$

$$
\begin{aligned}
\operatorname{lcm}\left(a, a^{\prime}\right) & =\frac{a a^{\prime}}{\operatorname{gcd}\left(a, a^{\prime}\right)} \\
& =a \underbrace{\left(\frac{a^{\prime}}{\operatorname{gcl}\left(a, a^{\prime}\right)}\right.}_{\text {intoger }})
\end{aligned}
$$

$$
r \in S\left(\operatorname{lom}\left(a, a^{\prime}\right), r\right)
$$

(2) $\exists B_{3}$

$$
\left\{r+n \operatorname{lem}\left(a, a^{\prime}\right)\right\}
$$

$$
\text { st } x \in B_{3} \subset B_{1} \cap B_{2}
$$

So we need show that $B_{3} \subseteq B_{1} \cap B_{2}$ Suffirient D chedh $B_{3} \leq B$,
Let $t \in B_{3}=S(c, d)$
so $t=r^{+} \operatorname{lem}\left(a, a^{\prime}\right) k$

$$
\begin{aligned}
& =n a+b+a\left(\frac{a^{\prime}}{\operatorname{gal}\left(a, a^{\prime}\right)}\right) U \\
& =a\left(n+U \frac{a}{\operatorname{gad}\left(a, a^{\prime}\right)}\right)+b \in S(a, b)=\beta,
\end{aligned}
$$

$$
\Rightarrow B_{3} \subseteq B_{1} \wedge B_{2}
$$

(4) Open rectengles in dim 4
(1)

$$
\begin{array}{ll}
& \forall x \subset \mathbb{R}^{4} \\
\hdashline \therefore & 0 x
\end{array}
$$

(2) \qquad

$$
-\bar{a}_{1}^{i}-a_{1}-
$$

Dffinten The teprolosy generated by a addie base (of a topology)
Let B be a base on X. We define
 by B^{2}, as fallers
$U \leqslant X$ gees $\Leftrightarrow \forall$

$$
\begin{array}{ll}
x \in U \\
B_{x} \in B_{B} & \text { st } x \in B_{x} \in U(x)
\end{array}
$$

$(\cdot x) B_{x}$

Prof of claim
Leto call tho subset of $P(x)$ of $(x), v$
(1) $\varnothing \circ \sigma$ yes $(\forall x \in \varnothing, \ldots)$
$x \in \tau$ yes (condition (1) of lase)
(2) Unims

Let $U=\bigcup_{\alpha \in I} U_{\alpha}, U_{i}$ satestax, (A)
Let $x \in U$ WLOG $x \in U_{1} \Rightarrow B_{x}$ st

$$
\Rightarrow \exists B_{x} \text { st } x \in B_{x} \leq U_{1} \text { by }(A), s o
$$

$$
x \in B_{x} \leqslant U_{1} \in \bigcup_{\alpha \subset Z} U_{\alpha}=U
$$

$$
\Rightarrow x \in B_{x} \subseteq U
$$

(3) intersectiens

Let U_{1}, U_{2} be satsfyng (A)

$$
\begin{aligned}
& \exists B_{1} \text { st } x \in B_{1} \subset U_{1} \\
& B_{2} \text { st } x \in B_{2} \subset U_{2} \\
& \Rightarrow B_{3} \text { st } x \in B_{3} \subset B_{1} \cap B_{2} \subseteq U_{1} \cap U_{2}
\end{aligned}
$$

Theerem
The topolozy pereated fo a lace possitlle crions of fass elementy
"opar sets we mias of onen libls
Proof

$$
\begin{aligned}
& J \leqslant \Sigma, \quad \Sigma \leqslant J \quad \Leftrightarrow \quad \tau=\Sigma \\
& \cdot(J \in \Sigma)
\end{aligned}
$$

Let $U \in J$. Thow mears trint for all $x \in U_{1}, \exists$ Bx st $B_{x} \in B$ st $x \in B_{x} \leq U \Rightarrow \bigcup_{x \in U} B_{x}=U$

- $\left(\sum \leq J\right)$ Snfficient \mathbb{D} shew that $\forall B \subset F, B \in J$
\Leftrightarrow unions vill culo be in v, by (2) of a tepraless

Checte
$\forall x \in B$, dos therr exnt

$$
B_{x} \in B \text { st } x \in B_{x} \leq B \text { ? }
$$

$A: B_{x}=B$

Boue İdentification Lemma
The typaleynt gereratub by ar bave is ements collantum of mims of bass

Q Ciren a tepiclogs 5 in x, how to chech that a β generats 络 terelogy, o? (ie wher io st iovalogy gererated $b y$ is equal of σ A (basis ident.jeciten lemma) Let J be a toprolog on X. If ou all a callaction of gren subset st Fer all U gien in in J, and all $+\in U$ there exists $B_{x} \in B^{\prime}, x \in B_{x} \leqslant U$ (x)
(1) \mathcal{B} is a basis

To cheelh (a)

st $x \in B_{x}(\leqslant X)$
Thi is implieel ly A for $U=X$
(1) If $B_{1}, B_{2} \in B$ the
$\forall x \in B \cap B_{2}$, then exists B_{3} st

$$
x \in B_{3} \subseteq B_{1} \cap B_{2}
$$

As B_{1}, B_{3} open

$$
\begin{aligned}
& \Rightarrow B_{1} \cap B_{2} \text { gen } \\
& \Rightarrow \text { Agcy (A) to } B_{1} \cap B_{2}
\end{aligned}
$$

(2) Tor gen by $B=\tau$
collectors of all unions
of las .s elements

As bass elements ore gen in I unions top of are oren in \because so tim tepolog γ generated by is is a subset of $\gamma \delta$.
For tho reverse inclusion lat u be gen in τ

$$
\begin{aligned}
Q: \bigcup_{x \in U} B_{x}=U & \left(\leqslant \text { as } B_{x} \leq U\right) \\
& \geqslant \forall x \in U, x \in B_{x} \\
& \Rightarrow x \circ U B_{x} \quad x \subset U
\end{aligned}
$$

Enfmitets May promes

$$
\begin{gathered}
S(a, b)=\{a+n b / n \in \mathbb{Z}\} \\
a \in \mathbb{N}
\end{gathered}
$$

Last the: The callation of sach $S(a, Q)$ call loms " burs of a terpalogy. Let call Fuistarloy toprolayy

Assumption' We have fin tats many primes

$$
\begin{equation*}
S(a, b)=[b](\bmod a) \tag{0}
\end{equation*}
$$

We can choose $b \in\{0, \ldots, a-1\}$

$$
\begin{gathered}
\Rightarrow S(a, 0) \cup S(a, 1) \cup \ldots \cup S(a, a-1)=\mathbb{Z} \\
{[0]} \\
{[0]}
\end{gathered}
$$

Font
If $B \in B$ then B is oven in era topology generator by 8 $\Rightarrow S(a, b)$ ore open in Firsienlong
$\{$ Oefmitien
A set $A \leqslant x$ is closed if its
complement io open.

$$
\begin{gathered}
S(a, b)=\mathbb{Z} \backslash S(a, 0) \cup \ldots, \widehat{S(a, b)} \cdot \\
\ldots v S(a, a-1)
\end{gathered}
$$

Asmmptom finitats may prones pi,...) pra Every inforge athe thes $1,-1$ can he witto oy upi fr $n \subset \mathbb{Z}$, pi one of pormes
\Rightarrow evary integer is contaured in $S(p, 0)$

$$
\begin{aligned}
&\{1,-1\}=\mathbb{Z},(s(p, 0) \cup S(p, 0) \cup \ldots \\
&\left.\ldots v S\left(p_{4}, 0\right)\right)
\end{aligned}
$$

claime $\{1,-1\}$ is open

$$
|S(a, b)|=|\{n a+b\}|=\infty
$$

So of $\{-1,1\}$ was wer, the $s(a, l)$ yenorate Sto tepoleyy $\{-1,+1\}$ in in sets $\nabla^{\text {if }}$ imossible
To shew the

$$
\begin{aligned}
& S(p, 0) \cup S\left(p_{1}, 1\right) \cup \ldots \cup S(p, 1,-1)=\mathbb{Z} \\
& \Rightarrow \underbrace{Z \mid S(p, 0)}_{\text {gan } D}=S(p, 1) \cup S(p, 2) \cup \ldots \cup S\left(p, p_{1}-\right))
\end{aligned}
$$

Order Topologies
Definithen
A is simple order on a sed x a a selatten $>$ satcigkm
(1) ethen $x=y$ or $x>y$ or $y>x$
(2) $x^{\gg} x$ as fulse
(3) $x^{2} y, y>2 \Rightarrow x>2$
simpla onlars: eithe $x<y, x-y, y^{<x}$

$$
\begin{aligned}
& x^{<} x \text { it fulso } y>y \\
& x^{<} y, y<z \Rightarrow x^{<} z
\end{aligned}
$$

Whmituen
The arder teproless on x wo w topleogy olenerutad ty fex fallenng

- (a, b) fr $a<b \quad(f, l)=\{x+X / a<x<b\}$
- $[a, b)$ of $a=\min (x, c)$
- $(l, c]$ of $c=\max (x,<)$

Example

$$
\angle \text { on } \mathbb{R}
$$

$\hat{i}_{\text {en }}$ on weleta (a nopla wa)
Prof (of vell ollunednes of defpervos) We noed to show that tith callection of INXo sob foms a heas for a toprolegs
(1) $V_{1} \times \in$, ense ense a lans elemet containg x

$$
\begin{aligned}
& \{(a, b) \mid a<\}\} \text {, so metie tornatiog } \operatorname{ly}
\end{aligned}
$$

3 cases
(c) $x=\operatorname{mn}(x, c)$
$x \in[x, y)$ for $x<y$ or $x=y$
(l) $x=\max (x,<)$
$x \in(y, x]$ for $y<x$
(c) neither (a) nor (b)
\exists a,l st $a^{<} x<b \Rightarrow x \in(a, b)$
(2)Sypose

$$
\begin{aligned}
& x \in(c, b) \\
& x \in(c, l)
\end{aligned}
$$

Let $\quad L=\max (u, c)$

$$
R=\min (l, d)
$$

$$
\Rightarrow x \in(L, R) \in(a, b) \cap(c, d)
$$

$\Rightarrow(L, N)$ is tex loss element be a basis cendibien Io

Example of coder Topology

$$
X=\{1,2\} \times \mathbb{N}
$$

element: $(1,2),(2,1),(1,1),(1,3), \ldots$

$$
(a, b)<(c, d) \text { of } a<c \text { or } a=c
$$

$$
(1,1)<(1,2)<(1,3)<
$$

$$
\text { is }(1,2)<(2,1) \quad \checkmark
$$

$$
(\hat{2}, 1)<(\hat{1}, 2)<(2,3)<
$$

Q: What is the resultite topology

$$
\begin{aligned}
\{(2,4)\}= & \underbrace{(2,3),(2,5)} \Rightarrow \Rightarrow(2,3 \in(x, y) \\
& (x, y) \in((2,3),(2,5)) \\
& \Rightarrow x=2 \text {, and } 3<y<5 \Rightarrow y=4
\end{aligned}
$$

$$
\Rightarrow\{(2,4)\}=((2,3),(2,51)
$$

\Rightarrow The ours torplorg cannot he $\{\varnothing, X\}$ as $\{(, 4)\}$ is oren! \Rightarrow NOt indiscrete

Q Dismeto 3
Are singeltions
Q: Is $\{(1,1)\}$ gen?

$$
\{(1,1)\}=[(1,1),(1,2))
$$

Qi $\{(2,1)\}$ open ?

$$
[(2,1),(2,2)) \quad\left(\text { as }(2,1) \not \Varangle_{m n}(x,=)_{0}\right)
$$

We need of sha that $\{(2,1)\}$ is NCT a loss element \Rightarrow it is not a union of basis elements as $|\{(2,1)\}|=1$

$$
\begin{aligned}
& \{(2,1)\} \neq[(1,1),(x, y)) \\
& \text { if }(x, y)=(1,2) \Rightarrow \text { not then } \\
& \text { else } \mid[(1,1),(x, y)))>1
\end{aligned}
$$

$$
\{(2,1)\}=((a, b),(c, d)) ? A=N O!
$$

- If $a=2$ then $(2, x)<(2,1)$ is imporslle
- If $a=1 \Rightarrow((1, l),(2, c))$ ecntacts more then / eloment!
So as $\{(2,1)\}$ is not open, PEx
ondes tapolozo is not divinto?
Product Topology
Let x, y be tepalagral spanes (ω a set $X+$ tepalesy an X) Difme a tepalogy on $X \times Y$?
Defriten
The forchut tepalogy on $X \times Y$ i generated by
$\{U \times V \mid U$ open in X, U ogen in $y\}$
Climin

$$
B=\{U \times V \mid U \text { gen is } X, V \text { ores } y \text { bons is }\}
$$

(1)

$$
\begin{aligned}
& (x, y) \in x+y \Rightarrow(x, y) \in x+y \in \mathcal{B} \\
& \text { y }(x, y) \in U+V \cap U^{\prime} \times V^{\prime} \\
& \Rightarrow(x, y) \in \underbrace{U \cap U^{\prime}+V \cap V^{\prime}}_{\text {hus.s elemett }} \leqslant U+V \cap U^{\prime}+V^{\prime}
\end{aligned}
$$

(2)

Clum

$$
\left\{B_{x} \times B_{y} / B_{x} \in B_{x}, B_{y} \in B_{y}\right\}
$$

gengates B_{x} produt tersidess an $X \times y$ leprategis on B_{x} ore

Produit Topolezz
Goven x, y tepoley.zal spoues, $X \times Y=$ contesin prolut n tex teprotegs genected ly
$\{U \times V \mid U \leq X$ open,$V \leq Y$ gren $\}$ Not that ther io equcalent os ters teprobess geverctal ly

$$
\{B \times C / B \in B, C \in C\}
$$

$B=$ hoer for tit topologs on x (no given togolagiy on X is gererated ly B) and tero the topialogs on y is uneraleps proeff (Basb iclertificalien lomma) To check. To all all dreas denutt $u \times v$ gm in $x v$ om in $x \times y$, and all $(x y) \subset Q$, dors stex ensb a boss elament 0 st $(x y) \in D \leq O \quad U_{\times v}$

A: yes! beccuse \mathcal{B} io a hoses fo X_{1} so thers io the $B \in B$ st $\left.\begin{array}{l}x \in B<U \text {, similery for y; Get } \\ C \in C\end{array} y \in C \in V\right]$

$$
\begin{aligned}
& C \in C \quad y \in C \leqslant V \\
& \Rightarrow B+C \leqslant U \times V
\end{aligned}
$$

Exemple
$\mathbb{R}^{2}=\mathbb{R}+\mathbb{R}$ (stenderd teproless an \mathbb{R})
boit fo $\mathbb{R}^{2}:\left\{B \times B^{\prime} / B, B^{\prime} c\right.$ boed elements $\}$

$$
\rightleftarrows_{a}{ }_{b}=\{(a, b) \times(c, d)\}
$$

\Rightarrow unas spen intervol as a laseb \Rightarrow bousi elbmast ore gon recitergles
\mathbb{R}^{2} as a metric space is generated by gren balls, io

$$
\left\{B_{\mu}(x) \mid x \in \mathbb{R}^{2}, r>0\right\}
$$

is a basd
Is $\mathbb{R} \times \mathbb{R}$ as a spare \mathbb{E} same as \mathbb{R}^{2} as a metrio spare? Yes y

Fout
If $A B$ ve bue of topaloged fo x, and all basa elemerts of A as onen in the topiolerys gereated by B,IIt Then In teprelergid agree \bar{T} shew that $\mathbb{R}+\mathbb{R}$ and \mathbb{R}^{2} (meter) agree we use the fact

Eloof

Law linit Topology (Surgen Frey live)

We tepalogise \mathbb{R} as follows let $\mathcal{B}=\{[a, b) \mid a<l\}$
and let eis sorgenfrey lexo be
generateds ly exts best
Noto

$$
(a, b)=\bigcup_{a<x<b}[x, b)
$$

\Rightarrow evrag sel opee in stio stander tontloge on len is open is the sorgingry an les

$$
\begin{aligned}
& \mathbb{R}_{1} \times \mathbb{R}_{1}=\text { Thpolegiral spane } \\
& \begin{array}{l}
\text { = tepolegrial spane with } \\
\text { live vectergle of } \\
\text { follenizy orn }
\end{array}
\end{aligned}
$$

This grey Sorserfrey plave
Subspanes
Let X be a toprolosgalal spare
Defmituen
The sulspare tegroloses on y is gven ly

$$
\tau_{y}=\{u \sim y \mid u \subset \tau\}
$$

where τ is tequalezy in X
Excrace: Thas is a torolegs

Eample
$\mathbb{R} \cap[0,1]$ (ock Teprocergy a \mathbb{R}) clive
A last for subu surpere topolegs on $[0,1]$ is given b

$$
\begin{aligned}
& \{(a, b) \cap[0,1] / a<l\} \\
& a<b<0 \Rightarrow \varnothing \\
& a>1 \Rightarrow \varnothing
\end{aligned}
$$

If $a<0, b \in(0,1)$

$$
\Rightarrow(a, b) \cap[G, 1]=[c, l)
$$

If $0<a<1, b>1 \Rightarrow(a, b) \cap[C, 1]=(a, 1]$
$0<a<b<1$

$$
\Rightarrow(a, b) \cap[0,1]=(a, b)
$$

$\Rightarrow O=\min ([0,1],<)$
$1=\max ([0,1],<)$

Nolos that this callester $([0, b),(a, 1], C, b))$ is up tor incluatty all of $[0,1\rangle$ tom bacs for reso sobe lepotrers on $[0,1]$
w i sulbue of 路 octer teprabers is same us ander toprocleys of restazted acher
Exceres iFind on exemple ufle thes is fuix
Fact
The prodult teppobsess and sulspane topology grerotiens commuto
is at $A \subset X, B \leq Y$ Thes subspere $A+1$ of $x \times y$ a x_{B} same or It product B of A is a subsoce if Y incue

Lemma
Let B be a base for $X, A \leqslant X$.

$$
B_{1}=\{B \sim A \mid B \subset B\}
$$

is a basct for sex sulipace teprabersy 4

Proof of Fowt
Chele wo acos find me lower lo both woprolog, ies

Sulspones
Let $y \in x$, The sulipoce y is topolograed as

$$
\tau_{y}=\{U \neg y / U \text { open in } x\}
$$

क U_{y} open in $y \leftrightarrow U_{y}=U_{n} y$

$$
U \text { gres in } X
$$

"produg tepology operation "communtes" io $A \leqslant x, B<y$ then
$A \times B$ tep as subpene of $x \times y$

$$
\begin{aligned}
& =A \times B \text { product of subsprees } \\
& A \subset X, B \in Y
\end{aligned}
$$

threef same lass fr loith
clered Sets
Difinten
Let $S \leq x$ we sug errit s is closed of $s=x \cdot u$ for u gren (eqminolinty, $x: S \in U$) is open)
Side Noto
It is an eny excarcese ef dilne a tots tevology in tomse of closed
(1) \varnothing, \times closed
(2) orlyng intrsestions of clovel sot are closed sets we closed
(3) Finito unins of closed sex

Notuation
$" \leqslant$ " subipene (ie brvelosiol)
"s" sulnot (not covedual)

Lemma
Let $Y \leqslant X$. A est C is closed is Y if $C=C^{\prime} 1 y$ for $C^{\prime \prime}$ closed in X.

Let C be closed in Y

$$
\begin{aligned}
C & =y \cdot U_{\text {coven in } y} \\
& =y \backslash\left(u^{\prime} \cap y\right) \\
& \Leftrightarrow x \in y, x \notin U^{\prime} \cap y \\
& \Leftrightarrow x \in y, x \notin U^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow x \in y, x \in x \cdot u^{\prime} \\
& \Leftrightarrow x \in y \cap\left(x \cdot u^{\prime}\right) \\
& \Leftrightarrow y \cap \underbrace{\left(x \cdot u^{\prime}\right)}_{\text {closed in } x} \\
& \text { so let } c^{\prime}=x \cdot u^{\prime}
\end{aligned}
$$

Defintren
Let $S \subseteq X$. We defme

- closwe of S,

$$
c l_{x}(S)=\bar{s}=\bigcap_{\substack{c \operatorname{mand} \\ s \in c}}^{s \in}
$$

smallest closed set contounng $S^{\prime \prime}$

- interier of S,

$$
\operatorname{in} t(S)=S^{0}=\bigcup_{\substack{\operatorname{coss} \\ u s S}} U
$$

"lergest gen set contcuineos in S"

Fuots
\bar{S} is clesed, S° is ogen,
S do closed $\Rightarrow S=\bar{S}$
S is ogen $\Rightarrow S=S^{\circ}$
foof Eaty \& preve
Lemma
Let $s c y \leqslant x$. The

$$
c l_{y}(S)=c l_{x}(S) \cap Y=\bar{S} \cap y
$$

Notation
\bar{S} usually refers \mathscr{o} cl (S)

foof

$$
c l_{y}(S)=\bigcap_{\substack{c \text { donel in } y \\ S \leqslant c}} C
$$

prenions

$$
\begin{aligned}
& =\bigcap_{c^{\prime} c l_{\text {oud }} x} C^{\prime} \cap Y \\
& s=c \operatorname{cin} y \\
& =\bigcap_{C^{\prime} \text { clowd in } x} C^{\prime} \cap Y \\
& S=C^{\prime}(a s s \leq y) \\
& =\left(\bigcap_{\substack{c^{\prime} \operatorname{sindn} X \\
s s c^{\prime}}} C^{\prime}\right) \cap Y \\
& =\bar{S} \cap y
\end{aligned}
$$

Defmitun
A reighlawhoed (nbhd) off $x \in X$ is on open U containing x

Lemma
The follaning cre equivalest
(1) $x \in \bar{S}$
(2) every alhd of x intersects S
(3) evry clored set contanng S also
conbains x

Acof
(1) $\Rightarrow(3)$

$$
x \in \bar{S}=\bigcap_{\substack{C \text { dorel } \\ s \leq C}} C
$$

So if C cenbains S and is closed then $\bar{S} \leq C^{\prime}$, so $x \in \bar{S} \Rightarrow x \in C^{\prime}$
(3) $\Rightarrow(1)$

Let $S \in C$ and C cleved invels $x \in C$

$$
\Rightarrow \bigcap_{s \leq c, c \text { dhal }}^{C}
$$

conturns x us all membes of Tero inlersecturn contuin x
$(2) \Rightarrow(3)$

Sugnose uring nezhlarhood of x intersects S

Let C be a clesed sel contemnng S. We wish io she $x \in C$. If $x \notin C$, then $x \in X: C$, an gren set contanng x or a nithd of x

By cescompiten, X, C then intersects S. Send $S \in C, \operatorname{Sn}\left(X{ }^{\prime} C\right)=\varnothing$

So $X \backslash C$ cuned intersect S so thes is a confradicton

(3) $\Rightarrow(2)$

Lit eney closed set contanng S alro contrin x. Let, U le a subhd of x. To shim U intarsect S let us cesseme this is not cone, io $U \cap S=\varnothing$

Siñ $U \cap S=\varnothing$
$\Rightarrow S \subseteq x \cdot U$, so $x \cdot U$ is clesed contrining S, I must contard x.
But clarly $x \notin X, U \quad$ as $(x \in U)$
Nefmithen
A amib pant of a set $S \leqslant X$ is a top space x is $p \in X$ st evrey inbhd af p intereet s in a pant atter trean p. Weito S^{\prime} for
$2 \neq p$

If क्षिs fs $u \Rightarrow p \in S^{\prime}$

The folloung are equivalent
(1) $x \in 5$
(2) enry bess element centurng p (ie all nlids if th which we lars isemerts) intersects s
frog carse
The flleming ore espunatert
(1) $x \in 5^{1}$
(2) Adl hocex elomerts contanngs x intersent S in a pont ather than X

Example
Let $S=[0,1) \cup\{2\}$ and find S^{\prime}
(1) Evarg pont $[0,1]$ it a lemi Z pont

Recall onen balls centared at P form a boir of must chent ont all strobers on IR, bolls we mared ched p y $[0,1]$
intersects with s^{\prime} contionn a paint other than p

$$
B_{p}(\varepsilon)=(p-\varepsilon, p+\varepsilon) \cap S=(\square)
$$

Case 1

$$
\begin{gathered}
B_{0}(\varepsilon) \cap S=[0, \varepsilon) \\
-(,),
\end{gathered}
$$

Case 2

$$
B,(\varepsilon) \cap S=(1-\varepsilon, 1)
$$

Case $3 n$

(Hare fur witt subccues)
In all cars $\left.\left(p^{-\varepsilon}\right) p+\varepsilon\right) \cap S i\{p\} \neq \varnothing$ so p is a limit pant
$\rho=-2$ is not a Demit pan

\Rightarrow no point in \mathbb{R} other them $[0,1]$ is a time pant
$\rho=2$ it not a limit point as $(1.5,2.5) \cap S 1\{2\}=\phi$

Examples

$$
S=\left\{\frac{1}{n} \ln \in N\right\} \text { in } \mathbb{R}
$$

if pant O

$$
(-\varepsilon, \varepsilon) \cap S=\{\frac{1}{n} \left\lvert\, \underbrace{\left.\frac{1}{n}<\varepsilon\right\}}_{\substack{0 \\ \text { Andinulany } \\ \text { if reals }}}\right.
$$

$$
\Rightarrow|(-\varepsilon, \varepsilon) \cap S|\{0\} \mid>0
$$

$\Rightarrow 0$ is a limit paint
No other point is a limit pond

Funt

$$
\bar{S}=S^{\prime} \cup S
$$

$x \in S \Leftrightarrow$ every nohd of x intersects S

$$
\bar{S} \subseteq S^{\prime} \cup S
$$

every nlud if a paint $x \in S$ intersecto s e.tha
in a point athe then x

$$
\left(\Rightarrow x \in S^{\prime}\right)
$$

or some nebd, U, of x eitesects S is x only

$$
\begin{aligned}
& \Rightarrow x \in U \cap S \\
& \Rightarrow x \in S \\
S & \geqslant S \cup S
\end{aligned}
$$

If $x \in S^{\prime} \Rightarrow$ ever nelnd of x intersects S $x \in S \Rightarrow \operatorname{def} n$

Sequcences
Definitur
A sequence is a tep space X is $x: \mathbb{N} \longrightarrow X$, writt $x_{i}=x(i)$

Definitren
A sot $S \in X$ minares, abserbs a cenpenve x of s costact all lit finileg many x_{i}

Difmithen

 (io all list firitey, meng seqpence elemeits ho is wit nbhal)

Examply
Seopmily toyratezy

$$
\begin{aligned}
& x: \mathbb{N} \longrightarrow X \\
& x_{i}=0
\end{aligned}
$$

x_{i} converges of 1
Do all nlods of 1 eventarify alsocl $\left(x_{i}\right)$? The aly nethd of 1 is x Does X eventands absal $\left(x_{i}\right)$ Yes D
The sequence alse anverges io O check

Example
X witt ix indescrele topotogy Then erny sequence converges Al all poin't

$$
\tau=\{\varnothing, X\}
$$

Sequences
Example

$$
x_{n}=(-1)^{n} \frac{1}{n}(\epsilon \mathbb{R})
$$

in a metrio tepabegs an $\mathbb{R}: x_{n} \rightarrow 0$

- laver limit toprologs an IR (bas.J $[a, b$) $a<l$ does not convege)
$x_{n} \rightarrow p \Leftrightarrow$ all bass elemerts contwints P eventanalf abserb x_{n} io all but finitab may terms lio is tito bass ilement

$$
x_{n} \rightarrow 0 \text { in } \mathbb{R}_{l}
$$

Consizer a bosis element containng O $B_{\varepsilon}=[0, \varepsilon)$. claim B_{ε} does nut absarb x_{n}

Elements in B_{ε} we non-regatin, lut $x_{1}, \ldots, x_{1}, x_{5}, x_{2 i+1}$ cre neqaboo so $x_{1}, x_{2}, x_{2 i t} \& B_{\varepsilon} \Rightarrow \infty$ may terions of $x_{n} \xrightarrow{\left(x_{n}\right)}$ do not lio in β_{ε} so

$$
y_{n}=\frac{1}{n}
$$

converges is O in lutt \mathbb{R} and \mathbb{R}_{l}

Fact
If X is Mansderff thes sequences converge At at mort A one paint
Proef: Exeruise
Culozers Theeny
A Categion consist af abeit and

Contentows functins
Nefn 䆜
$A^{c t s}$ functen $f: X \rightarrow Y$ for top spares X, Y is a my st fo all one $U \subset Y, f^{-1}(u)$ is oven in X
Fast
$f_{\text {a }}$ is continous of $f^{-1}(B)$ ib onen
 itapolages on y,

$$
\text { topionegs on } Y
$$

Example

$$
f: \mathbb{R} \longrightarrow \mathbb{R} \text { gren } x \longmapsto x^{2}
$$

proof "scon"

$$
\begin{aligned}
& \text { which lusir for es enteley } \\
& \text { which genewte ax gien }
\end{aligned}
$$

Fact
Lif (X, d) and (Y, e) he metrid spuces $f:(x, d) \rightarrow(y, e)$ a mags between metrio spaces io, conthions ab a point $x \in X$ if $\forall \quad \varepsilon>0$ a $\delta>0$

$$
d\left(x, x^{\prime}\right)<\delta \Rightarrow e\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon
$$

io contanious of f i contenions af all pamits

$$
\begin{aligned}
& x^{\prime} \in B_{1}(\delta)=>f\left(x^{\prime}\right) \subset \beta_{10}(\delta) \\
& \Leftrightarrow f\left(B_{x}(S) \in B_{l o s}(\varepsilon)\right.
\end{aligned}
$$

Lemma
The follewing ore equiralant
(1) f is cts
(2) $\forall A \subseteq X, f(\bar{A}) \leq \overline{f(A)}$
(3) $\forall x \in X$ cont all nolhds V of $f(x)$

(4) ber all clesed $C \leqslant y$ Tho pre-mage $f^{-1}(C)$ io closed in X

Fer (3) I do not require that $f(U)$ is ogen
(1) $\Rightarrow(2)$

Let $x \in \bar{A}$, To prove $f(x) \in f(A)$

Recall $x \in \bar{S} \Leftrightarrow$ fo all nezhbow hoocls u of $x, u \wedge S \neq \varnothing$
$f(x) \in \overline{f(A)} \Leftrightarrow \forall$ nethls U of $f(x)$,
$U \cap f(A) \neq \varnothing$ Conider $f^{-1}(U)$. $(1)+c f^{-1}(W)$
(2) $f^{-1}(u)$ is oper $\Rightarrow f^{-1}(u) \cap A \neq \varnothing, \gamma=\varnothing$ then $f^{-1}(U)$ io a nethd of x with stomals interecteren witb A, $8 \quad x \in \frac{x}{A}$

Sug $p \in A \cap f^{-1}(U)$

$$
\Rightarrow f(p) \in f(A) \cap U
$$

$$
\begin{aligned}
& \Rightarrow U \wedge f(A) \neq \varnothing \\
& \Rightarrow f(x) \in \overline{f(A)}
\end{aligned}
$$

Recall U was a rind of $f(x)$
$(2) \Rightarrow(4)$
LAt $C \subseteq y$ creel want ID show $f^{-1}(C)$ is closed. Let $A=f^{-1}(C)$ To shew $\bar{A}=A \quad(\Leftrightarrow$ a is closed $)$
is $\bar{A} \subseteq A$
$x \in \bar{A} \Rightarrow$ need for $x \in A=f^{-1}(C)$

$$
\Leftrightarrow f(x) \in C
$$

$$
\begin{aligned}
& \text { (2) } x \in \bar{A} \Rightarrow f\left(x \in f(\bar{A}) \leq f(A)=\overline{f\left(f^{-1}(c)\right)}\right. \\
& B \leq C \\
& \Rightarrow \bar{B} \subseteq C
\end{aligned}
$$

$$
b\left(f^{-1}(c)\right) \leq C
$$

(4) $\Rightarrow(1)$

Let $U \leqslant Y$ be gren
$\Rightarrow Y \cdot U$ closed

$$
\begin{aligned}
& f^{-1}(y-u)=f^{-1}(y) \cdot f^{-1}(u) \\
&=\underbrace{f^{-1}(u)}_{\text {doved }} \\
& \Rightarrow f^{-1}(u) \text { open }
\end{aligned}
$$

(1) $\Rightarrow(3)$

Pirk $x \in X$. pirll alhd, V of $f(x)$ we need a nilhd U of x st $f(u) \leq V$
Let $u \in f^{-1}(v)$

(3) $\Rightarrow(1)$

Let $U \leq y$ be gren

$$
f^{-1}(U) \text { is gen }
$$

Let, $x \in f^{-1}(u)$. Then $f(x) \in U, U$ is a alhal aff $f(x) \Rightarrow$ 荷 x exists a nlnd W af x st $f(W) \leq U^{\text {exists }} f(W) \leq U$ nend $W \in f^{-1}(u)$

$$
\Rightarrow \bigcup_{x \in f(\vec{H})} W_{x}=f^{-1}(U) \quad\left(a x x \in f^{-1}(U) \text { and } x \in U\right)
$$

\Rightarrow kncen of genen sof
$\Rightarrow f^{-1}(u)$ is open

Facts
Let X, Y, Z be top spaces,
(1) $|f(x)|=1 \Rightarrow f$ is cts
(2) id: $x \rightarrow x$ is oft
(3) $f: x \rightarrow y, y_{c t}: Y \rightarrow z \Rightarrow g_{c t}$ of cts
(4) $A \leq X$ a subspace, $f: X \rightarrow Y$ cts
$\Rightarrow \int \|_{A}$ at $d s$
(5) $\bar{m}_{1}(x+y) \rightarrow X, \bar{n}_{2}(x+y) \rightarrow Y$ we cts
(b) $f: x \rightarrow y \times z$ is as Hf $n, 0 f, \pi_{2}$ of are cts

A, B closed

$$
\begin{aligned}
& f(x)=g(x) \\
& \forall x<A \cap B
\end{aligned}
$$

$$
\Rightarrow A \cup B \rightarrow Y \text { vin } h(x)= \begin{cases}f(x) & x \in A \\ y(x) & x \in B\end{cases}
$$

is its if fig are cts
f is a group han is a groys isomerplism \Leftrightarrow of bjectwee and f^{-1} it a groys hom
Dffitien
fis a homeomaphom ("Tsomaphism is topalesg") $y_{i 1} f_{i} x \rightarrow y$ is is ats, is is a lijection f^{-1} is is
Nensten
f is an embeclalens (if $f: x \rightarrow Y$ io to an injectixs) and a homeomerphom anto it imaze

Dinsen
Let x be a top spane od $A=A \leq x$
Eemple
$\bar{Q}=\mathbb{R} \quad \overline{\mathbb{R} \cdot Q}=\mathbb{R}$, ulgebrar realf
$Q \cdot O=\mathbb{R}$
Nefustion
A is seperafle of it is dence and courtand
X an searable of X achist a dove
Defintien

Excmples
\mathbb{R} with basi $\left\{B_{z}(\varepsilon) \mid \xi \in \mathbb{Q}, \varepsilon, \frac{j}{n} f_{a}\right.$ of $\left.\operatorname{lom}_{n} \in \mathbb{N}\right\}$
(Chech)

$$
B_{x}(\varepsilon)=U \text { lalls in losis alove }
$$

- \mathbb{R}^{n}
- Fart metric spere $2^{\text {nd }}$ constaxdo ay Segrable

Quatient Topalegy

$$
S^{\prime}=\left\{(x, y) \subset \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

torolozzed as a subspue of \mathbb{R}^{3}
Recall : A busis for S^{\prime} il vien Iy cunsileng an besiss of sing indectiten witg s'

If we we open lally an or lass in \mathbb{R}^{2} then tero loss fe 5^{\prime} ore open cres

Anather ogiters is it conscles a mas

$$
f:[0,2 \pi]
$$

meuswing are lengtt ablery gis ancle from a basepont $\#$ in a specific drecten tix typrial basi elemats ore of form f $\left(\left(\theta_{1}, \theta_{2}\right)\right)$

Coul: What conditters shoulel a mys hove so sthat we cu recenstunt les itrobleys an S_{D}^{\prime} (witheut is hawng ing embed
NoW: f serpecture

$$
U \leq S^{\prime} \text { open } \Leftrightarrow f^{-1}(U) \leq[0,2 \pi]
$$

is open
Noot That f is almort a homeemorphism (injectuve excegto $f(0)=f(2 \pi)$)
"Picture"

In the care we con check that giving

$$
\left.S^{\prime}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\} \quad \text { (as a set }\right)
$$

$U \leqslant S^{\prime}$ open $\Leftrightarrow f^{-1}(U)$ open gros ter toprobess an S^{\prime} defined before

$[0,0,)_{\text {a open }}$
$\left(\theta_{2}, 25\right]$ as oren as well
$\Rightarrow f^{-1}(U)$ open

Defin.tuen
A map $f: x \rightarrow y$ is a suobient mas y
(1) f is sujecteve (ele $y \cdot f(x)$ is diricto $)$
(2) $u \leqslant y$ gren $\Leftrightarrow f^{-1}(U)$ is open

Eample

$$
f:[0,2 \pi] \rightarrow S^{\prime}
$$

is a suobient mgs
Eacorple

$$
[0,1] \times[0,1]
$$

Nefmitern
Let x be a tepalegical pace ad Y a seb, 8 a surjectix mig on: $X \rightarrow y^{\prime}$. The quetiont topabegs
 such that P_{y} is a suabeint mg sto quetient topotess given by p. $\binom{$ Specifically, }{$U \leq y$ is gren $\Leftrightarrow p^{-1}(U) \leq X$ is grean } Exaple
If we consider $f:[0,2 \pi] \rightarrow S_{\hat{\imath}}^{\prime}$ as a set Thes Th quatint typotags an S^{\prime} agrear vith ix prevously defred one.
Example
$X \rightarrow X / r$, (uhre ${ }^{n}$ nelatien on an esumations) We suy Trid $X / \sim i i_{0}$ on idencfrotien spoue

Example of Example

$$
\begin{gathered}
x=[0,2 \pi] \\
0 \sim 2_{\pi} \\
p \sim p
\end{gathered}
$$

$$
x / \sim=\{\{0,2 \pi\},\{p\}\}
$$

$$
\sum_{p \in(0,2 \pi)}
$$

Then of is really suit

$$
\begin{aligned}
f: x & \longrightarrow x / r \\
y & \mapsto[y]
\end{aligned}
$$

Nefriten
A set S is saltualeal with regrent a a mop $f: x \rightarrow y$ if
$S \cap f^{-1}(p) \neq \varnothing \Rightarrow f^{-1}(p) \subset S$

Fad
S io salturaleil $\Leftrightarrow S$ is a pre emaje some set $U \leq Y$

Fat
A surjective continows mig is a suctient nap Xf) mors open seiteralail setf its open seto

Fait
$p: x \rightarrow Y, p$ cts, serjectuve is a $\underbrace{\text { quottert mop }}$

$$
\text { sojucbine }+u \leq y \text { gen } \Leftrightarrow \rho^{-1}(u) \text { gan }
$$

If P muys salesateril ges set io geen sets
A suthatuel
\Leftrightarrow

Definition
P is opren if p mesy opreal sets is olocel open set
Fant
Open surjectuve cts maps are quoteent mugy Closed
proysutiens
drim
Projecties $(\pi: X \times Y \rightarrow X)$ we open futt not closeal
$\bar{\pi}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is not closed. Censider
$S=\left\{\frac{1}{n} \times\left.[2 n, 2 n+1]^{n o t}\right|_{n} \in N\right\}$; ihsis 2 not cloreal lost $\bar{n}(S)=\left\{\frac{1}{n}\right\} \subseteq \mathbb{R}$ is of closed

$\bar{n}(S)$ is not closed

$$
\text { " }\left\{\left.\frac{1}{n} \right\rvert\, n \in N\right\} \text { us } O \text { d a lemit pant }
$$

Ay alhd of 0 milesed $\bar{n}(S)$

$$
\Rightarrow 0 \in \bar{n}(S) \text { lat } O f \pi(S)
$$

S is closeal
\square

suot on vien dse, small mangh ontaroob at, S ${ }_{5}{ }^{3}$ dis diomt ived

$$
\begin{aligned}
& p: \mathbb{R} \rightarrow\{1,-1\} \\
& p(y)=+1 \quad \text { of } \quad q>0 \\
& p(\xi)=-1 \quad \text { yf } \quad q \leq 0
\end{aligned}
$$

What it quitelt molesers? it ang togroless malis ρ a watent
$\varnothing=\rho^{-1}(\varphi) \Leftrightarrow \varnothing$ gen
$\rho(\{-1\})=(-\infty, 0] \Leftrightarrow\{-1\}$ net open

$$
\begin{aligned}
&\{+1\}=(0, \infty) \Leftrightarrow\{+1\} \text { open } \\
& \rho^{-1}(\{+1,-1\})= \mathbb{R} \text { open } \\
& \Leftrightarrow< \\
&\{+1,-1\} \text { on }
\end{aligned}
$$

$$
\begin{aligned}
& q(x)= \begin{cases}+1 & x \in \mathbb{Q} \\
-1 & x \in \mathbb{R}\end{cases} \\
& q^{-1}(\{+1\})=\mathbb{Q} \\
& q^{-1}(\{-1\})=\mathbb{R} \backslash \mathbb{Q} \\
& \Rightarrow+i+i
\end{aligned}
$$

Fant
Lit $p: x \rightarrow y, A \leqslant x$. If p a a subbient ugp, A saturatel at witt respect Do p, the $p_{A}: A_{t} \rightarrow p(A)$ is a gubobient myls of P_{A} either of

- A open ar clesecl
- p oper or closeel

Proof set Theony (easy)

May ont
Fact

$$
\Rightarrow g(x)=g(y)
$$

Then y ind axes a map of st $f \circ p=g$
(1) of quotient mas of if is a quotient usp
$(\alpha) y$ its $d f f$ cts

Leef
What is f ?
delue $f: y \rightarrow z$ st of y cy then $g\left(r^{-1}(y)\right)=2$ (constant in flas) so defme $f(y)=z$

claing g cts \leftrightarrow ots

$$
g=f \circ p
$$

g cts \Rightarrow Rich $u \leq z$, oren. To show $f^{-1}(u)$ open

$$
g^{-1}(u)=p^{-1}\left(b^{-1}(u)\right) \quad(g=f \circ \rho)
$$

U open $\Rightarrow g^{-1}(U)$ open ρ quotient mop
$\Rightarrow \underbrace{p^{-1}\left(f^{-1}(u) \text { open off } f^{-1}(a) \text { oven }\right.}_{=\delta^{-1}(l) \text { open }} \Rightarrow f^{-1}(u)$ open $\Rightarrow f$ cts
(heater on
Wed $2-3 \mathrm{~nm}$
May 1

Spartiten Candittens (axims)
Defintem
X is Honcderfy
$\forall x \neq y$, 左
$U{ }^{3} \times, V \geqslant y$ swh that $U \wedge V=\varnothing$

Tmplication

$$
x \backslash\{x\}=\bigcup_{y \neq x} U_{y}
$$

where $x \in V, y \in U_{y}$

$$
\begin{aligned}
& V \sim U_{y} \neq \varnothing \\
& U_{y}, V \text { we open } \\
& \Rightarrow X-\{x\} \text { is ser } \\
& \Leftrightarrow \text { is cloreel }
\end{aligned}
$$

Definituen
A spoue is T_{1} if singoltiss are closed

Font
In, a T, space (particulang $1+\omega$),
fin: Do sett are cloreel. The implies that of J_{c} is the then $J_{c}=\bar{J}_{1}$ aerobes an x, and x is $T_{\text {, }}$, then refines $J_{c}=J_{1}$ are in topraterss in topateses" \Leftrightarrow singeltits ore closed

Wifmitur
A T_{1} spec X is regale sets C not conlcunny x are ce open U, V $U \cap V=\varnothing, x \in U, C \leq V$

Difitin
A T_{1} space X it normal of \forall closed diryoint set $C, D \subseteq X$ for en exists open sett $U, V \leq X \leq t$

$$
C \in U, \omega \subseteq V, U \wedge V=\varnothing
$$

Fant
Let X be a T, spue
(1) X is reguler and for ald alhd
U of x le lea exiss
a nlind V of x st

$$
\bar{V} \leq U
$$

(2) x all clored setf C and all oner U which contain C Wher existe a open set V st $C=V \quad \bar{v} \leqslant U$

Alaref
X regule
in $(1)$$\Rightarrow X$ satufres 路 canderan in (1)

Let $c=x \cdot u \quad\left(-u^{c}\right)$ X regular $\Rightarrow \exists O_{1}, O_{2}$ open such that $x \in O_{1}, C=O_{2}, O_{1} \cap O_{2}=\varnothing$ Lit $V=O_{1}$ chim $\bar{V}=\bar{O}_{2} \leqslant u$ ($\sin \rightarrow \mathrm{O}_{2}$ is clovel $\Rightarrow O_{2}^{c} \leq U$ $\Rightarrow \overline{Q^{\prime}} \leq 0_{2}^{c} \leq U$

Fact
(1) A subszare of a Housdarfl spone it
(2) A subjuwe of a reguler space is reguler
(3) Subipues of nomal spever moyr not be normal
froef
(2)

$C \leqslant y$ clored

$$
\begin{aligned}
& \Leftrightarrow C=Y \cap C^{\prime}, C^{\prime} \text { clveal in } x \\
& \Rightarrow V \cap Y, U \cap y \text { oper }
\end{aligned}
$$

in Y, drigeint $C \leqslant V \cap y, x \in U \cap Y^{\prime}$
(3)

Canot gruento exiteme $C^{\prime} D^{\prime}$ dispont
sum theal $C=C^{\prime} \quad D \in \omega^{\prime}$

Exapals
\mathbb{R}_{l} as normal

Eact
$\mathbb{R}_{1} \times \mathbb{R}_{1}$ Sargesfrey plene) is rot nomal

Compactroxs
Dimieta
A cerer far a terolesizal sque is a calleten $\left\{U_{\alpha}\right\}_{\alpha a I}$ of one sets

Nifin tion
X is compent yf erry cores $\left\{U_{\alpha}\right\}_{a=i}$ ardmito a finido subconer io

$$
x=U U_{\alpha} \quad \alpha \in J \in I \quad \text { it }|J|<\infty
$$

Example

is compuit

Exam od

$$
\mathbb{R} p^{2}=\omega^{2} / \sim \sim(-x)
$$

Fent
A clesed subsit of a compait spare so compout

Cleim
X compreut, $C \leqslant X$ closeel $\Rightarrow C$ compecet

$$
C \subseteq \bigcup_{n \in I} U_{\alpha}, U_{\alpha} \text { gren }
$$

Consider

$$
X=\underbrace{X \cdot C}_{\text {oren }} \cup \bigcup_{\alpha \in I} U_{\alpha}
$$

$\Rightarrow X$ compant, finit subcover

$$
\begin{aligned}
\Rightarrow x & =X \cdot C \vee \underbrace{U_{1} \cup U_{2} \vee \ldots \cup U_{n}}_{\geqslant C} \\
& \Rightarrow C \leq U_{1} \cup \ldots \vee U_{1} \\
& \Rightarrow\left\{U_{\alpha}\right\}_{\alpha \in I} \text { orlinon Compont }
\end{aligned}
$$

Defin: Tm
A spoue so Cindelif if every cerer

$$
\bigcup_{\alpha \in I} U_{\alpha}=X
$$

admit a contenteb subcorer

Excmple

$$
\mathbb{R}_{l} \times \mathbb{R}_{l}(\text { bens }) \text { so not Lndelaf }
$$

Exmpule
\mathbb{R} is not cempait

$$
\mathbb{R}=\bigcup_{n \in \mathbb{Z}}(n, n+2)
$$

Cleim
Let X be Hamsder . If $C s X$ is compait then C is closed

Poof

$\operatorname{Let}_{\Rightarrow C=} x^{\in}=\frac{I}{C} \cdot I+C$

$$
\Rightarrow C=\bar{C}
$$

X Homisclerff Pirl $U_{y}{ }^{2} x$ $V_{y} \rightarrow y$, fo enth $y \in C$

$$
\Rightarrow C \leqslant \bigcup_{y<c} V_{y}\left(c_{s} y \in V_{y}\right)
$$

\Rightarrow (compont
\Rightarrow Iniso subcones

$$
\begin{aligned}
& C \leq V_{y_{1}} \vee V_{y_{1}} \cup \ldots \cup V_{y_{n}} \\
& U=U_{y_{1}} \cap U_{y_{2}} \cap \ldots \cap U_{y_{n}} \text { gren } \nabla \\
& U \cap V_{y_{1}}=\varnothing \\
& \Rightarrow U \cap\left(U V_{y_{i}}\right)=\varnothing \Rightarrow U \cap C=\varnothing \\
& x \notin C{ }_{0} \Rightarrow C=C \Rightarrow C \text { closeel }
\end{aligned}
$$

Fact
$\xrightarrow{\text { Let }} f f(x)$ be conpuntroy. x compent
beof

$$
f(x) \subseteq \bigcup_{\alpha \alpha x} U_{\alpha}, \quad u_{\alpha} \text { guen }
$$

$f^{-1}\left(U_{\alpha}\right)+$ oves

$$
\Rightarrow \bigcup_{a \in t} f^{-1}\left(u_{t}\right) \text { it }
$$

a won of gre sot

$$
\begin{aligned}
=f^{-1}\left(U U_{\alpha}\right) & =f^{-1}(f(x)) \\
& =x
\end{aligned}
$$

Let $x=f^{-1}\left(u_{1}\right) \vee \ldots \vee f^{-1}\left(u_{n}\right)$
he a funto suleover on X is compait

$$
\begin{aligned}
& x=f^{-1}\left(u_{1} \vee u_{2} \vee \ldots \vee u_{n}\right) \\
& \Rightarrow u_{1} \vee u_{2} \vee \ldots \vee u_{n} \geqslant f(x)
\end{aligned}
$$

$\Rightarrow f(x)$ compant

Fait
Let f be a cenlinions mys from a compceib spene to a Hansdel spare, ligettue. Den is a hemeemorphism
beaf
Let $C \in X$ cloxed
X compact $\Rightarrow C$ Conpant
$\Rightarrow f(C)$ compact subint of Hawsels. sulset, so closed
\Rightarrow f closed map
$\Rightarrow f^{-1}$ contande
\Rightarrow f hemeemorphism

Compontress uniler focluctos
Eant
Let X be compant, Y compuit
$\Rightarrow X+Y$ at compaut
Femple
I compont $\Rightarrow I \times I=E$ comperef

$$
I^{3}=I \text { compout }
$$

I^{4} compait

Lemme (Tube)
Let x, y be comport. Let $N \subset x+y$ be open such that $x_{0} \times y \leq \mathbb{N}$ for some x_{0}.

Then then exists a rebid W of to pored

$$
\begin{aligned}
& x_{0} \times y=y \\
& \left(x_{0}, y\right) \mapsto y \\
& \Rightarrow x_{0} \times y \text { it compact } \\
& (\text { as } y \text { al }) \\
& \Rightarrow \operatorname{li}=4 \text { a pant }(x y) \in x_{0} \times y
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{0}, y\right) \in \mathbb{N}(\text { gun } \partial) \\
& \left(x_{0}, y\right) \in U_{y} \times V_{y} \subseteq N \quad\left(U_{y} \leqslant x, V_{y} \leqslant y\right) \\
& \Rightarrow \text { get }\left(x_{0}, y\right) \in U_{y}+V_{y} \in N \text { Ps all } y \in Y
\end{aligned}
$$

Consider $V_{y} \in Y($ apenisy)

$$
\begin{aligned}
& U V_{y}=y \Rightarrow y=V_{y_{1}} \cup V_{y_{2}} \cup \ldots \cup U_{y_{1}} \quad \text { (lin wo sulcame) } \\
& y \in Y \\
& \Rightarrow U=U_{y_{1}} \cap U_{y_{2}} \cap \ldots \neg U_{y_{n}} \\
& \Rightarrow U \times Y \leqslant N \\
& x_{0} \in U_{y} \Rightarrow x \in W
\end{aligned}
$$

Cempartross
Recens "Tale Lemma"

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow \text { a abral } w s x \\
\text { a and }
\end{array} \\
& \begin{array}{l}
x \in X \quad s t \\
w x y s
\end{array} \\
& W \times Y \leqslant N \\
& \text { tule }
\end{aligned}
$$

Clarm
X, y compart $\Rightarrow X * Y$ compant
froof of Climm
Let $\quad x+y \leqslant \bigcup_{\alpha \in D} A_{a}$
Let $x_{0} \in X$ orbidx
Then $x_{0} \times y \leqslant \bigcup_{\alpha \in \mathcal{I}} A_{\alpha}\left(=x^{*} y\right)$
Y compant $\Rightarrow x_{0} \times y$ compant

$$
\Rightarrow x_{0} \times Y \subset A_{\alpha_{1}} \cup A_{\alpha_{2}} \cup \ldots \cup A_{\alpha_{n}}
$$

Ayply Auty cemmer it $N=A_{\alpha_{1}} \cup \ldots \cup A_{\alpha_{n}}$ Sinco $x_{0} x y \leqslant A_{\alpha_{1}} \cup \ldots \cup A_{\alpha_{n}}$

Ento lemma yoves us $x_{0} \in W_{t_{0}}$ st $W_{r_{0}} x y \leqslant A_{\alpha} \cup \ldots \cup A_{\alpha_{n}}$

$$
\bigcup_{x_{0} \cdot x} W_{x_{0}}=X .
$$

As IniD in subcever

$$
\begin{aligned}
& X=W_{x_{a}} \cup \ldots \cup W_{x_{1}}=\bigcup_{C} W_{x_{1}} \\
& \Rightarrow X \times Y=U\left(W_{x_{a}} \times Y\right) \\
& =U\left(A_{\alpha_{1}} \cup A_{\alpha_{2}} \cup \cup A_{\alpha_{1}}\right)=\bigcup_{\alpha<x} A_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(U W_{i}\right) \times Y \\
& =\bigcup_{i}\left(W_{i}+y\right)
\end{aligned}
$$

Wito $W_{x i} \times Y \in A_{i}^{i} u \ldots A_{n}^{i}$
vhare $A_{j}^{i}=A_{\alpha}$ for sene $a \in I$

$$
\begin{aligned}
\Rightarrow x \times y & =\bigcup_{i} W_{x j} \times y \\
& =\bigcup_{i}\left(U_{j}^{i}\right) \leq \bigcup_{\alpha \in E} A_{\alpha}
\end{aligned}
$$

\Rightarrow fin Subcover

Exmplos
$[0,1]$ compant
$\Rightarrow[0,1] \times[0,1]$ it compent

Cerrectectnees

 torealess of $\left(3,4^{2}\right](0,1)$ and tex ty toprology $(0,1) \leqslant S$ gen $(0,1)^{c}=S 1(0,1)$ gren

Dffmen
A sigarutuen of a teproleg.eab spare $X=U \cup V$ if, Y, V open, dispume nen
If X admits a segaration then
Fent
If X aclmist a sepratien, $X=V \sim V$ thes U, V are open and cloceel Exmple
S is diconneeteet
Fut
Syspese $X=U \cup V$ is a egnantien ad $y \leqslant X$ connecterb. Then $y \subseteq U$ on $y \leq V$
fraef

$$
\text { Writg } y=\underbrace{(U \cap y)}_{\text {ones } n y} \cup \underbrace{(V \cap y)}_{\text {onn } n y}
$$

Sinotry does not aclmit a szocition either $U n y$ or $V \cap Y$ is empiof
wlog $V \cap Y \neq \varnothing \Rightarrow Y=U \cap Y \leqslant U$

Fabt
Lit A be connecter sulzrave of X. If B satufre thet $A \leq B \leq \bar{A}$
(io $B=A \cup\{$ are limit pant of $A\}$) then B is conrected

Suppere not. Write
$B=U \cap V$, a sporatoien A conrecters $\Rightarrow A \subseteq U$ or $A \subset V$. wlog assume $A \subset U$.
Let $x \in \bar{A}$. Syspose $x \in V$, thes V so a nlthd of x st $V \cap A=\varnothing$ So $x \notin A$
"s centracliztion

$$
\begin{aligned}
& \Rightarrow x \in U \\
& \Rightarrow \beta \in U
\end{aligned}
$$

Therem
The unien of comected subrpaies shoing a point a connesterb.
fecef
Supbore not
Let $y=\bigcup_{a \in I} Y_{i}$ where $x \in Y_{i}, Y_{i}$ coneatual Writo $Y=U \cup V$, a sgomatien, Then $Y_{i} \leq U$ (wheg)

$$
\begin{aligned}
& \Rightarrow x \in y_{i} \subseteq U \Rightarrow x \in U \Rightarrow y_{i} \leq U \quad \forall x \in Y_{i} \\
& \Rightarrow U y_{i} \leq U \Rightarrow y \leq U \Rightarrow V=\varnothing
\end{aligned}
$$

Fant
If $x \hat{A}$ comectal, $f: x \rightarrow y, f c t s$,

Let $f(x)=U \cup V$, a sepsaction, Then

$$
f^{-1}(u) \cup f^{-1}(v)=x
$$

is a seforaten a contrueltotem
Fant
X, Y connextex $\Rightarrow X \times Y$ is connectex
Regef
Let $T_{y_{i}}=\left(X \times\left\{y_{i}\right\}\right) \cup(\{x\} \times y)$ fo some $X \cong X \times\{y$.$\} \quad (hemeomerphic)$
and $y \cong\{x\}+y$

$$
\Rightarrow\left(x, y_{i}\right) \in X \times\left\{y_{i}\right\}
$$

and $(x, y) \in\{x\} \times y$
$\Rightarrow T_{y_{i}}$ connectud
$\Rightarrow X \times Y=\bigcup_{y \in Y} T_{y:}$ ゅ connecled
as $(x, y) \in T_{y_{i}} \quad V_{i}$

Topeclogists Sne Corve
Let $f_{i} \mathbb{R}_{30} \longrightarrow \mathbb{R}$

$$
x \longmapsto \gg \sin \left(\frac{1}{x}\right)
$$

lasider gregen of $f=\{0\} \times[-1,1]$

Claim
Topologits sino cerve is cennectal porf
(1) Frrst we shep that wa greph af of is canectex canazs of comectad set under centmious nup g)

$$
y(x)=\left(x, \sin \left(\frac{1}{x}\right)\right)
$$

(2) $B \Rightarrow \lambda_{0}$ a set st $A \subseteq B \subseteq \bar{A}, A$ conectad $\Rightarrow B$ canrectes

Stert
Let $(x, y) \in\{0\} x[-1,1]$, claino \exists a sequene
$\left(v_{n}\right) \leq \operatorname{graph}(l)$
such that $\mathrm{Va}_{a} \rightarrow(x y) \Rightarrow(\not y y) \in T S C$
Let $r \in[-1,1]$
Th $l y$ intemediato value theenem \exists

$$
\begin{aligned}
& x>0 \text { st } \sin \left(\frac{1}{x}\right)=r \\
& \Rightarrow \sin \left(\frac{1}{x}+2 u_{\pi}\right)=r \text { for } u \in \mathbb{Z} \\
& \Rightarrow \frac{1}{x^{\prime}}=\frac{1}{x}+2 u_{r} \\
& \Rightarrow x^{\prime}=\frac{1}{\frac{1}{x}+2 u_{\pi}} \\
& \Rightarrow \lim _{u \rightarrow \infty} \frac{1}{\frac{1}{x}+2 u_{\pi}}=0
\end{aligned}
$$

$\Rightarrow(0, r)$ ゅo limit pont of

$$
\begin{aligned}
& v_{u}=\left(\frac{1}{\frac{1}{x}+2 u_{\pi}}, \operatorname{sn}\left(\frac{1}{\frac{1}{x}+2 u_{\pi}}\right)\right) \\
& \Rightarrow v_{u} \rightarrow(0, r) \\
& \Rightarrow(0, r) \in \operatorname{grgh}(f) \text { for any } r \in[-1,1] \\
& \Rightarrow T S C \in \operatorname{grgh}(f) \Rightarrow \text { consectesb }
\end{aligned}
$$

The Comb Spare

The space is

$$
[0,1] \times\{0\} \cup\left\{\left.\left\{\frac{1}{n}\right\} \times[0,1] \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\} \times[0,1]
$$

Deleted combsue i
$C \backslash\{(0,0),(0,1)\}$

Chim
C is conectexb
froof
Cornecter? $l y$ prenors result, C is a unien of troex sito contiving $(0,0)$

Lemma
X comecited \leftrightarrow a contewiors fincten i $X \rightarrow\{0,1\}$ comot
he serjective diserdt

Proef
$\Leftrightarrow X$ comectext, of cts
$\Rightarrow f(x)$ is comectero
But $\{0\} \cup\{1\}$ form a sparation of $\{0,1\}$
$\Rightarrow f(x) \leq\{0\}$ or $f(x) \leq\{1\}$
\Rightarrow comet be surjective
\Leftrightarrow Pasting Lemma ; $f: C, \rightarrow y$ cs $\mathrm{g}: \mathrm{C}_{2} \longrightarrow y$ cts, $C_{1}, C_{2} \leq x$ are
closed

$$
\left.f\right|_{c_{1} \sim c_{2}}=g l_{c_{1} \wedge c_{1}}
$$

$\Rightarrow h i C_{1} \cap c_{1}-y \quad$ given by

$$
\begin{gathered}
h(1)=f(c), c \in C_{1}, h(c)=f(c) c \in C_{2} \\
\text { is } t_{s}
\end{gathered}
$$

We will apply semen as follows Let $U \vee V$ be a sgavatess of X U, V are coral D
$h: x \rightarrow\{0,1\}$ as

$$
x \leftrightarrow 0 \text { if } x \in U
$$

This it ats by testing lemma as

$$
\begin{aligned}
& f: U \rightarrow\{0,1\} \quad x \mapsto 0 \text { and } \\
& y: V \rightarrow\{0,1\} \quad x \mapsto 1
\end{aligned}
$$

are contentious

$$
U \cap V=\varnothing, \quad U, V \text { closed }
$$

\Rightarrow Pastor Lemma

$$
\Rightarrow h \mathrm{cts}
$$

\Rightarrow centraulictem

D2/man
Let x be a tep spane. Deline $\operatorname{set}^{n} C$ of sind exists a connectord set C st $\operatorname{lig}^{x} \subset C$. This is an
Ayly. iono
The equinatant closees ve culled comector components

Comectact componento

$$
[0,1],[2,3)
$$

Example
\mathbb{R} is comeciots, so \mathbb{Z} ar comentad componerts is \mathbb{R}
Etemple
$\mathbb{N} s \mathbb{R}$, The cinestord cmponert wo are singelows

Eomple
$\mathbb{Q} \leq \mathbb{R}$ same

Eant
Cemeenod componento muy not be open ($\{a\}$ not oper D in)

Theorem
Cennexted compenerst cre closed and connectert.

Prof
(1) comected.

Let C he a cornects componat
Pich some $x \in C$

$$
\begin{aligned}
& \text { Let } y^{\bullet} \subset C \text { be colixims. Sind } \forall s \in C \\
& \Leftrightarrow \rightarrow \quad x \sim y \Leftrightarrow \exists \text { a comectoob sel } \\
& C_{y} \text { st }=C_{y} x, y \in C_{y}, \text { it then } C_{y} s C \\
& x \sim z \Rightarrow z c()
\end{aligned}
$$

$\Rightarrow C=\bigcup_{y \in C} C_{y}$, a unon of conrecters setball of which
$\Rightarrow C$ is comectend as a union of cemectets set sharing a pon't
(2) closed

A correctext $\Rightarrow \bar{A}$ conrecterd
$[x]=C$ be a conrectex componers Let $y \in \bar{C}$. Then \bar{C} is a conresere sed (as C is cenrecteetb) so $y^{\sim} x$ (as $y, x \in Z$ connectiods) $\Rightarrow y^{2} x \Rightarrow y \in C$

2fivituen
X not dirconrecteil if X is not connectect.

Cherwterisotier
Acleitroy, a pomt it a comectats component yields a dsconreeterd

Fuct
A conrected subset is contared is a corrected cemponert

Patb Conecteebrees
NA:Tun
 cts st $f(0)=x, y(1)=y$
Exaple
-

$$
\begin{aligned}
& \text { I×I } \\
& \text { coneiteat }
\end{aligned}
$$

$T^{2}=S^{\prime} \times 5^{\prime}$ is patto canecterb

Fant
X patts conreatex $\Rightarrow X$ comecterb
Eximpob
Toperlogits sio cerve, NOT patt
\qquad
\qquad
\qquad $\underline{\longrightarrow}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ltametery
Definitur
A defermattes strwit $\eta_{t}: X \rightarrow A$, where $A \leqslant X$ io a mop $\sim: X \times I \rightarrow X$ swh that

$$
r_{t} / A=i d \quad r_{0}=i d / x
$$

Examplo
(1)

$$
\begin{aligned}
& X=\omega^{2} \times s^{\prime} \quad r_{t}(p, s) \\
& A=\{0\} \times s^{\prime}=((1-t) p, s)
\end{aligned}
$$

$$
S^{1} \times W^{2}=
$$

$t=0$

$t=1$
(2)

Cleim
X def retraut to A

Falt
Dffomatos retrint

Dy/n inen
Let $\mathrm{hg}: X \rightarrow Y$ cts. V_{e}
his are homoteprio
$H: \underbrace{I}_{\substack{x=2 . a n \\ b y-b y y y}} \rightarrow y$ st H cts

$$
H(-, 0)=f, H(-1)=8
$$

$2: I \rightarrow S^{2}$

$$
H:(0,+)
$$

$$
\mathscr{C} S^{2}
$$

$$
\gamma^{i} I>S^{2}
$$

clim $\alpha \simeq_{h} \gamma \quad(\alpha$ lomotopic $a v)$
need $H: I+I \rightarrow S^{2}$

$$
\text { st } \begin{aligned}
H(-, 0) & =\alpha \\
H(-, 1) & =\gamma
\end{aligned}
$$

Whintare
X, y wa, homax equicaleng of x exsts $f: x \rightarrow y, g i y \rightarrow x$ st
(1) $\log \approx_{k} i d_{y}$
(2) $g \circ f \approx_{4} i d_{x}$

Fant
If X, Y are homeomorphe, IVer Ites are homoty equivalent.

Eampls
IR and $\{0\}$ are homettrs equivalert (list not homeamarptic)
Need $f: \mathbb{R} \rightarrow\{0\}$

$$
y:\{0\} \rightarrow \mathbb{R}
$$

Lroof
Nead IA prove
$f \circ g \approx i d\{0\}$ (only are inge $\{0\} \rightarrow\{0\}$)

$$
\begin{aligned}
& g \circ f: \mathbb{R} \longrightarrow \mathbb{R} \\
& g(f(x)=g(0)=0
\end{aligned}
$$

To shan goo \approx, d_{k}
io $\exists H: \mathbb{R} \times I \rightarrow \mathbb{R}$

$$
\text { st } \begin{aligned}
H(-, 0) & =\text { id } \\
H(-, 1) & =g^{\circ} f=x \mapsto 0
\end{aligned}
$$

$H(x, t)=(1-t) x$ cts

$$
\begin{aligned}
& H(x, 0)=(1-0) x=x \\
& H(x, 1)=0
\end{aligned}
$$

$\Rightarrow N$ and $\{0\}$ we homotos equivalent θ
raub
If x defermation vetrouts A thes X and A are hamotox equivalut
poof
We need $b: x \rightarrow A$

$$
f \circ g \approx i d_{A}, g \circ f \approx i d_{x}
$$

$y=$ sulspare inclusies

$$
g(a)=a
$$

As x defermation retruts is A tex we here

$$
\begin{aligned}
& r_{t}: X \rightarrow X \text { st } \\
& r_{0}=i d_{A}, r_{1}(x) \in 1, \quad r_{t} /_{A}=i d \\
& f \circ g(a)=r_{1}(g(a))=r_{1}(a)=a \\
& \Rightarrow f \circ g \approx_{h} \text { id }
\end{aligned}
$$

$$
\begin{aligned}
& g \circ f(x)=g(\underbrace{r_{1}(x)}_{\epsilon A})=r_{1}(x) \\
& \Rightarrow g \circ f=r_{1} \Rightarrow \text { reed hamotox from } \\
& r_{1} \text { to } r_{0}
\end{aligned}
$$

The elffranitx strut is

$$
H: X \times I \rightarrow X
$$

is a to mus st

$$
H(-, 0)=r_{0}, \quad H(-, 1)=r_{1}
$$

$\Rightarrow r_{0}$ and r_{1} we hamatoypic

The converse is not two

$$
X, A \text { st } X \simeq A
$$

lint X does not def retract of A

$$
\begin{aligned}
& \{0\},\{1\} \\
& z=\{0,1\}
\end{aligned}
$$

Eant
If x, y ane hematofy equiventut
Thil \sum_{1}^{\exists} clef retwects $x \in \sum_{x}, y \leq z$ X and y

Clewin
Hongtes equivins is on equivalerce
relatien

$$
\begin{aligned}
& \text { (1) } x \approx y \\
& \text { (2) } x \approx y \Rightarrow y \simeq x \\
& \text { (3) } x \approx y, y \approx z \Rightarrow x \simeq z
\end{aligned}
$$

frasef
(3)

$$
\begin{aligned}
\Rightarrow & (x \circ f) \circ(g \circ l) \simeq i d x \\
& (g \circ l) \circ(u \circ f) \simeq i l_{2}
\end{aligned}
$$

Fat
Hang equivalere is on equinalere velater
x, y homotopry equivalent

st $f_{0} g=i d y, g_{0} f^{\sim} \cdot d$
m has unt a mop

$$
\begin{aligned}
& H(-, 0)-\log \\
& H: y \times I \xrightarrow{\longrightarrow} y \text { st } H(-, 1)=i
\end{aligned}
$$

Eat
$f \sim y \Leftrightarrow f$ havetrot tole in
(1) $f \sim b$
(2)

$$
\begin{aligned}
& f n g \Rightarrow g n f \\
& y \\
& I \quad \frac{t}{y}
\end{aligned}
$$

(3) $f \sim g, g \sim h \Rightarrow f \sim h$

$$
x \sim y, y \sim z \Rightarrow x \sim z
$$

$$
\begin{aligned}
& H^{y}: Y+\Gamma \rightarrow y \\
& H^{y}(-, 0)=l 04 \\
& H^{y}(-, 1)=i d
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\bar{t}}{\mathrm{t}} \text { pere }(y \circ l) \cdot(u \circ f)=i d_{y} \\
& H: x \cdot I \longrightarrow x \\
& H(x, t)=y H^{y}(f(x), t)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
H(x, 0) & =g H^{\prime \prime}(f(x), 0) \\
= & (g \circ(l \circ K) \circ f)(x) \\
& =(g \circ l) \circ(H \circ f) \\
H(x, 1) & =g H^{y}(f(x, 1)=g(f(x) \\
& =g \circ f(x) \\
\Rightarrow H(-0) & =(g \circ l) \circ(u \circ g) \\
H & H(-1)
\end{array}\right) y \circ 0
$$

Fant
x, y are hemoter equabint

\qquad

